If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+6w-14=0
a = 1; b = 6; c = -14;
Δ = b2-4ac
Δ = 62-4·1·(-14)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*1}=\frac{-6-2\sqrt{23}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*1}=\frac{-6+2\sqrt{23}}{2} $
| 6=11w | | 10=-3r | | -5/3u=-2 | | -2=-3/2a | | -6=-4/3x | | m-19=63 | | -23=-3/2r | | 2=-6/5s | | 30=(x*11)+((.25*x)*11) | | -5/6a=1 | | 70+0.55x=50+0.65 | | 30=(x*11)+(1*x) | | 30=(x*11)+(.25*x) | | 6k+90=180 | | 99+9m=180 | | 2c-3=97 | | 63+9v=180 | | 149+(5x+1)=180 | | x*0.02=35 | | 8-3.3=u | | X+(64/x)=34 | | 6.2-4.5=s | | 3.8+6=t | | w-3=2.5 | | m-3=6/7 | | 4x-36=26 | | 8-5.4=q | | q-2=5/6 | | 1/2+w=1/2 | | 5/6+y=9 | | 2p=662 | | m/24=14 |